دانلود تحقیق فیزیک دان ایرانی و شگفت آفرینی تازه سیاه چاله ها

Word 33 KB 10358 6
مشخص نشده مشخص نشده مهندسی هوافضا - دفاعی و جنگ
قیمت قدیم:۷,۱۵۰ تومان
قیمت با تخفیف: ۵,۰۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • فیزیک دان ایرانی و شگفت آفرینی تازه سیاه چاله ها

    یک فیزیک دان ایرانی مقیم دانشگاه میسوری در کلمبیا هنگام بررسی نتایج نظریه نسبیت اینشتین روی ذراتی زیر اتمی که با سرعت زیاد در حرکتند موفق به کشف اثر تازه و شناخته نشده ای از سیاه چاله ها شده است.

    سیاه چاله ها که در زمره ی عجیب ترین اجرام کیهانی به شمار می آید باز هم شگفتی آفریده اند و اخترشناسان را حیرت زده کرده اند. به نوشته ی هفته نامه ی علمی نیوساینتیست بهرام مشحون و همکارش کارمن چیکانک در دانشگاه میسوری در بررسی های علمی خود به این نکته پی برده اند که سیاه چاله ها می توانند نیروهای جزر و مدی عجیبی تولید کنند که بر ذرات با سرعت زیاد تاثیری متفاوت از ذرات با سرعت کم باقی می گذارد. این اثر پیشبینی نشده به این معناست که سیاه چاله ای که در مرکز کهکشان خود ما قرار دارد می تواند منبع پرتوهای کیهانی بسیار پرقدرت و نادری باشد که اخترشناسان تاثیر مخرب آنها را در جو زمین مشاهده کرده اند اما تاکنون نتوانسته اند توضیحی برای منشا شان پیدا کنند.

    نیروهای جزر و مدی بر اساس نظریه ی نیوتونی هنگامی ظاهر می شوند که تاثیر نیروی جاذبه به واسطه ازدیاد فاصله کم می شود به عنوان مثال 2 ذره که در فواصل متفاوتی نسبت به یک سیاه چاله قرار دارند تحت تاثیر 2 نیروی مختلف قرار می گیرند و یکی از آنها که نزدیک تر است شتاب بیشتری پیدا می کند. اما توضیحی که از طریق فیزیک نیوتونی به دست می آید برای شرایطی که در نزدیک سیاه چاله ها برقرار است کفایت نمی کند. اخترشناسان از مدت ها قبل به این نکته پی برده بودند که در پلاسما(ماده در دما و فشار زیاد) که اطراف سیاه چاله ها در گردش است ذرات بنیادی و زیر اتمی با سرعت بسیار زیاد فراوانند.

    مشحون و همکارش در تلاش محاسبه این امر بودند که این ذرات در میدان جاذبه قدرتمند سیاه چاله ها چگونه رفتار می کنند. این 2 فیزیکدان دریافتند که تاثیر میدان جاذبه سیاه چاله ها روی ذراتی که با سرعت کم در این میدان حرکت می کنند دقیقا به همان نحو است که فیزیک نیوتن پیشبینی می کند اما در مورد ذراتی که با سرعت نزدیک به سرعت نور حرکت می کنند نتایج به دست آمده کاملا خلاف انتظار بود. ذراتی که با سرعتی بیش از 70درصد سرعت نور300هزار کیلومتر در ثانیه حرکت می کنند رفتارشان تابع جهت حرکتشان است.

    ذرات پرسرعتی که در امتداد محور چرخش سیاه چاله ها حرکت می کنند از شتاب حرکتشان نسبت به ذرات کند کاسته می شود اما ذرات تند سرعتی که در جهت عمود بر این محور سیر می کنند شتابی بسیار زیاد و انرژی حیرت انگیز و عظیم کسب می کنند.

    نتایج بدست آمده به وسیله مشحون و همکارش شماری از رصد ها و مشاهدات توضیح ناپذیری را که اخترشناسان در گذشته انجام داده بودند قابل فهم ساخته است. از جمله این امور افشانه های بسیار پر قدرت از جنس ذرات زیر اتمی است که از قطب های اجرام کیهانی موسوم به((مایکروکازارها)) به بیرون پرتاب می شوند. تلقی خترشناسان آن است که مایکروکازارها سیاه چاله ها را درون خود پنهان ساخته اند. آنچه که موجب حیرت اخنرشناسان بود آن است که این ذرات پر انرژی دارای شتاب کاهش یابنده هستند. علاوه بر این از تحقیقات مشحون و همکارش چنین بر می آید که رویداد های حیرت انگیز دیگری نیز در جهات دیگر و هنگام حرکت ذرات پر شتاب رخ می دهد که هنوز مشاهده نشده است. به اعتقاد مشحون نیروهای جزر و مدی کند کننده تنها در زاویه55 درجه از محور یک سیاه چاله ظهور می یابد و تنها در این زاویه است که ذرات زیر اتمی شتاب منفی پیدا می کنند و از سرعتشان کاسته می شود. در همه جهت و زوایای دیگر حول این محور این نوع ذرات شتاب مثبت بدست می آورند و براساس نظریه اینشتین سرعت این ذرات می تواند تا سرعت نور بالا برود. اگر نظریه مشحون و همکارش درست باشد سیاه چاله هایی که در کهکشان ما قرار دارند دائما ذرات پر شتاب و پر سرعتی عمدتا از جنس پروتون را به بیرون پرتاب می کنند که انرژی شان هنگامی که به زمین می رسند بیش از1020الکترون ولت است. به گفته مشحون می توان نظریه پیشنهادی او و همکارش را با مقایسه رابطه میان جهت ورود پرتوهای کیهانی مافوق پرقدرت به جو زمین و موقعیت مایکروکازار ها در کهکشان راه شیری را مورد آزمایش قرار داد.

    چگاله های گرما

    برای ساختن چگاله ی بوز-آینشتاین فیزیکدانان معمولا گاز های اتمی را در چند میلیاردم یک درجه ی کلوین سرد می کنند. به تازگی گزینه ی جدیدی مطرح شده که می توان این سیستم های کوانتمی درشت مقیاس را در دما های نسبتا بالا با استفاده از پولاریتون ها کاوید.

    بر اساس مکانیک کوانتمی، طبیعت موجی یک شئ به آن اجازه می دهد تا از میان مانعی بگذرد که از نظر فیزیک کلاسیک مطلقا غیر قابل نفوذ است.

    پس چرا نمی توانیم تونل زنی و دیگر پدیده های کوانتمی را در زندگی روزمره مان ببینیم؟

    دلیل اینست که این پدیده ها تنها در مقیاس طول موج اتم هایی اتفاق می افتد که اشیا ریز- مقیاس را شکل می دهند، و این طول موج ها بسیار کوچکتر از آنند که اثرشان دیده شود. برابر فرمول      (در این فرمول p اندازه ی حرکت است و برابر است با حاصل جرم در سرعت)، طول موج دوبروی یک اتم نوعی در دمای اتاق در حدود   است.

     

    برای مشاهده ی رفتار موجی یک ذره ما باید اندازه حرکت آن را کاهش دهیم. اگر اندازه حرکت گروهی از ذرات آنقدر پایین باشد که طول موج ذرات با فاصله بینشان برابر شود، تابع موج منحصر به فرد ذرات شروع به انطباق سازنده می کنند یا به عبارتی افزایش می یابند. وضعیت بسیار منظمی که حاصل می شود به نام چگالش بوز- آینشتاین شناخته می شود که در آن تمام ذرات همچون یک موج واحد رفتار می کنند. این پدیده تنها در میان ذراتی به نام بوزون ها که دارای اندازه حرکت زاویه ای و اسپین صحیح هستند شکل می گیرد.

    از زمان ساخته شدن اولین چگاله ی بوز- آینشتاین (BEC) از اتم های گاز روبیدیم، 12 پیش، فیزیکدانان علاقمند بوده اند که به این اندازه حرکت بسیار کوچک از طریق سرد کردن ذرات (کم کردن سرعتشان) برسند. اما دمای مورد نیاز فوق العاده پایین است، در مجموع تنها چند میلیاردم درجه، که نیازمند تکنیک های بسیار پیشرفته سرمایش از جمله سرمایش لیزری می باشد. گزینه ی دیگر که هماکنون توسط لابراتوار های بسیاری در سرتاسر دنیا دنبال می شود، ساختن نوع خاصی از ذرات بسیار سبک به نام پولاریتون است. پولاریتون ها که بوزون هایی هستند متشکل از یک جفت حفره- الکترون و یک فوتون، میلیارد ها بار سبک تر از اتم های روبیدیم هستند، بنابراین باید قادر باشند BEC را در دما های بسیار بالاتر تشکیل دهند.

    اولین نشانه ی چگاله ی پولاریتون سال گذشته زمانی که Jacek Kasprazk از دانشگاه ژوزف فوریه در فرانسه به همراه همکارانی در سویس و انگلستان، از لیزر برای افزایش پیوسته چگالی پولاریتون ها در یک ریز حفره ی نیمه رسانا که در دمای نسبتا گرم 19K قرار دارد استفاده کردند، بدست آمد. آنها دریافتند که بالای چگالی بحرانی پولاریتون ها شروع می کنند به نشان دادن رفتار همدوس یک BEC.

     

    دیگر محققان این زمینه شک داشتند که پولاریتون ها BEC واقعی بوده باشند، چراکه این رفتار تنها در منطقه ای که با لیزر برانگیخته شده است دیده شده، که این منطقه به خودی خود همدوس است. برای حل این مشکل دیوید اسنوک و همکارانش از دانشگاه پیتزبورگ و آزمایشگاه های بل در ایالات متحده سیستم مشابه ای ساخته اند که در آن پولاریتون ها توسط لیزری تولید می شوند که متعاقباً از برانگیختگی لیزری دوری می کند. آنها این کار را با استفاده از یک میخ تیز به عرض 50 μm انجام دادند که با ایجاد یک پریشانی ناهمگن در ریز حفره تله ای می سازد که پولاریتون ها می توانند در آن انباشته شوند. آنها دریافتند که در این سیستم هنوز BEC در دمای 4.2K شکل می گیرد.

    با اینکه این نتیجه به گرمی BEC 19 کلوینی ای که تیم Kasprazk گزارش کرده نیست، دکتر اسنوک به فیزیک وب گفت که از زمان انتشار نتیجه تا کنون آنها دمای چگاله را تا 32K افزایش داده اند: "به دلایل متعدد می توان انتظار داشت که می توانیم به دماهای بالاتر هم برسیم... من رسیدن به دمای اتاق را پیش بینی نمی کنم اما بیش از 100K دور از دسترس نیست."

    به علاوه ریز حفره ی تیم آمریکایی از نیمه رسانا های در دسترس گالیم آرسنید که در سیستم های محصور سازی -مانند آنچه که برای گاز های اتمی استفاده می شوند- ساخته شده است که باعث می شود این زمینه برای گروه های تحقیقاتی بیشتری قابل دسترسی باشد.

    با این وجود هنوز تردید هایی وجود دارند که آیا سیستم اسنوک یک BED با شرایط متعارف است؟ چرا که پولاریتون ها چنان عمر کوتاهی دارند که سیستم تنها می تواند به شبه- تعادل برسد. اسنوک می گوید:" برخی می خواهند استفاده از عبارت BEC را به سیستم های در تعادل حقیقی محدود کنند. از طرف دیگر عده ای می خواهند این عبارت را کلی تر کنند تا تمامی انواع سیستم ها ازجمله لیزر را در بر گیرد. به نظر من این مسئله بیشتر مربوط می شود به اصطلاحات و نامگذاری فنی."

    صحبت کردن نقاط کوانتومی با همدیگر

    دانشمندانی که امیدوارند از نقاط کوانتومی به عنوان واحدهای ساختمانی نسل جدید رایانه‌ها استفاده کنند، روشی برای ایجاد ارتباط بین آنها پیدا کرده‌اند0020

     امینه الاحمدی، دانشجوی دکتری دانشگاه ?اوهایو? که به همراه پرفسور Sergio Ulloa

    ، یافته‌های مربوط به این تحقیق را در مجله Applied Physics Letters به چاپ رسانده است، می‌گوید: اساساً نقاط کوانتومی با همدیگر صحبت می‌کنند.

    این نقاط بلورهای کروی مهندسی شده‌ای با قطر حدود 5 نانومتر می‌باشند. اگر بخواهیم مقایسه‌ای انجام دهیم، می‌توانیم بگوییم که قطر متوسط یک سلول حدود 1000 نانومتر می‌باشد.

  • فهرست:

    ندارد.


    منبع:

    ندارد.

يک فيزيک دان ايراني مقيم دانشگاه ميسوري در کلمبيا هنگام بررسي نتايج نظريه نسبيت اينشتين روي ذراتي زير اتمي که با سرعت زياد در حرکتند موفق به کشف اثر تازه و شناخته نشده اي از سياه چاله ها شده است. سياه چاله ها که در زمره ي عجيب ترين اجرام کيهاني به ش

تصویر چهارده پس از نسبیت باید نگاهی به مکانیک کوانتومی بیاندازیم جایی که دانشمندان زیادی از جمله نیلز بور ، ولفانگ پائولی ، اروین شرودینگر ، انریکو فرمی و ورنر کارل هایزنبرگ . مکانیک کوانتوم حاصل کار چندین نفر بود ، در صورتی که نسبیت با تمام گستردگی خود حاصل ذهن خلاق اینشتن بود . اما گفتنی است که اینشتن یک انسان معمولی نبود . با بررسی هایی که بر روی مغز او انجام شده است مشخص شده ...

نگاهی به سیاهچاله در مرحله ی اول عید نوروز را به هم وطنان عزیرم تبریک می گویم و آرزو می کنم که در تمام زندگی موفق باشید . به لطف خدا در این مقاله سعی کردیم تا بتوانیم در رابطه با سیاهچاله و مباحث مرطبت با آنها توضیحی هر چند اندک داده باشیم . این مقاله در سه بخش مجزا از هم ارائه شده است . 1- فصل اول که مختصری از مرگ یک ستاره را به نمایش می گذارد 2- فصل دوم نیز اطلاعاتی در زمینه ...

درس جغرافیای ریاضی یکی در دروس اصلی رشته جغرافیا می باشد و موضوع آن نیز بررسی شکل هندسی زمین و به ویژه حرکات آن درفضا می باشد، مطالعه وضعیت اجرام آسمانی ازقبیل سیارات، ستارگان، سحابیها و کهکشانها را نیز در بر می گیرد. با فراگیری این دانش می توان دید وسیعی نسبت به جهان آفرینش از نظر جغرافیا را به دست آورد. همبستگی جغرافیای ریاضی با دانش نجوم بسیار نزدیک و قابل بحث است و در واقع ...

بخش اول استیون ویلیام هاوکینگ استاد کرسی لوکاشین در 29 اوریل 1980 در سالن کنفرانس کوکرافت در کمبریج انگلستان جایی که عرصه بالیدن تامسون و راترفورد بود، دانشمندان و مقامات دانشگاه روی صندلی‌های ردیف‌شده بر کف شیب‌دار سالن که مقابل دیواری پوشیده از وایت‌برد و پرده اسلاید بود، گرد‌هم آمده بودند. این جلسه برای وضع اولین خطابه یک پروفسور جدید کرسی لوکاشین(Lucasian) ریاضی برقرار شده ...

استیون ویلیام هاوکینگ استاد کرسی لوکاشین در 29 آوریل 1980 در سالن کنفرانس کوکرافت در کمبریج انگلستان جایی که عرصه بالیدن تامسون و راترفورد بود، دانشمندان و مقامات دانشگاه روی صندلی‌های ردیف‌شده بر کف شیب‌دار سالن که مقابل دیواری پوشیده از وایت‌برد و پرده اسلاید بود، گرد‌هم آمده بودند. این جلسه برای وضع اولین خطابه یک پروفسور جدید کرسی لوکاشین ریاضی برقرار شده بود. این پروفسور ...

مقدمه یکى از نخستین حل هاى معادله اینشتین را فیزیک پیشه منجمى به نام کارل شوارتس شیلد به دست آورد. شوارتس شیلد متریک اطراف یک کره مثلاً اطراف یک ستاره را به دست آورد. این متریک که امروزه متریک شوارتس شیلد نام دارد، خاصیت بسیار عجیبى دارد: اگر شعاع ستاره از حدى کوچک تر شود، دیگر حتى نور هم از آن نمى تواند بیرون بیاید. در این حالت ستاره تبدیل به شىء عجیبى مى شود که سیاهچاله نام ...

مقدمه یکى از نخستین حل هاى معادله اینشتین را فیزیک پیشه منجمى به نام کارل شوارتس شیلد به دست آورد. شوارتس شیلد متریک اطراف یک کره مثلاً اطراف یک ستاره را به دست آورد. این متریک که امروزه متریک شوارتس شیلد نام دارد، خاصیت بسیار عجیبى دارد: اگر شعاع ستاره از حدى کوچک تر شود، دیگر حتى نور هم از آن نمى تواند بیرون بیاید. در این حالت ستاره تبدیل به شىء عجیبى مى شود که سیاهچاله نام ...

بعد از یک مقدمه ی بیست و چند صفحه ای به اصل موضوع رسیدیم . جایی که امروزه یکی از بزرگترین چالش های دانش انسانی به شمار می آید . حال وقت آن رسیده است که به این سؤال پاسخ دهیم که چرا نسبیت عام را شرح دادیم ؟ در سال 1916 کارل شوارتز شیلد که فیزیکدانی آلمانی بود جواب گروهی از معادلات نسبیت عام را برای نخستین بار به دست آورد و آن ها را سنجید . جواب این معادلات طبیعت جرمی را شرح می ...

گندم از مهم‌ترین غلات است. این گیاه در دو گونه وحشی و اهلی موجود است. گندم یک ساله و از خانواده گرامینه‌ ها (گندمیان) است خصوصیات گیاه گندم گندم، گل آذین سنبله‌ای دارد. از هر گره آن یک برگ به وجودمی آید سنبلچه گندم متشکل از دو گلوم و سه گلچه بوجود می‌آید. گاهی تعداد گلچه‌ها به ۹ هم می‌رسد. دانه گندم بین دو پوشش قاشق مانند به نامهای پوشک بیرونی (لما) و پوشک درونی (پالئا) قرار ...

ثبت سفارش
تعداد
عنوان محصول