دانلود تحقیق نیروگاه ها

Word 564 KB 22925 144
مشخص نشده مشخص نشده محیط زیست - انرژی
قیمت قدیم:۲۷,۴۰۰ تومان
قیمت با تخفیف: ۱۹,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • 1-1- مقدمه
    نیروگاه های بخاری یکی از مهمترین نیروگاه های حرارتی می باشند که در اکثر کشورها، از جمله ایران سهم بسیار زیادی را در تولید انرژی الکتریکی بر عهده دارند، به طوریکه سهم تولید این نوع نیروگاهها حدود 3/47% کل تولید انرژی کشورمان می اشد. از مهمترین این نیروگاهها در کشورمان می توان به نیروگاه های شهید سلیمی نکا ،‌شهید رجایی قزوین، شهید محمدمنتظری اصفهان ، رامین اهواز، اسلام آباد اصفهان، طوس مشهد ، بعثت تهران ، شهید منتظر قائم کرج، تبریز ، بیستون کرمانشاه ، مفتح (غرب) همدان ، و بندرعباس اشاره نمود. مشخصات این نیروگاهها به همراه دیگر نیروگاه های بخاری کشورمان در سال 1381 را میتوان در جدول (1-1) مشاهده نمود.
    در این نیروگاهها، از منابع انرژی فسیلی از قبیل نفت، گاز طبیعی، مازوت و غیره استفاده میشود؛ به این ترتیب که از این سوختها جهت تبدیل به انرژی حرارتی استفاده شده، سپس این انرژی مکانیکی، و در مرحله بعد به انرژی الکتریکی تبدیل می گردد. به عبارت دیگر در این نیروگاه سه نوع تبدیل انرژی صورت می گیرد. اولین نوع، تبدیل انرژی شیمیایی (انرژی نهفته در سوخت) به انرژی حرارتی است که این تحول در وسیله ای به نام دیگ بخار صورت می پذیرد. این تبدیل انرژی باعث می شود که آب ورودی به دیگ بخار تبدیل به بخار با دمای زیاد شود. دومین نوع، تبدیل انرژی حرارتی به انرژی مکانیکی است که این تحول در توربین نیروگاه صورت می گیرد و انرژی حرارتی در بخار ورودی به توربین، تبدیل به انرژی مکانیکی چرخشی محور توربین می شود. سومین و آخرین نوع از تبدیل انرژی در نیروگاه های بخاری، تبدیل انرژی مکانیکی روتور به انرژی الکتریکی می باشد که این تحول در ژنراتور نیروگاهها صورت می گیرد. در نهایت، انرژی الکتریکی توسط خطوط انتقال به مصرف کنندگان منتقل می شود. در این فصل برآنیم تا تجهیزات این نوع نیروگاهها را تشریح کنیم. بدین منظور ابتدا سیکل ترمودینامیکی بخاری بیان می گردد. پس از آشنایی مقدماتی با تجهیزات اصلی یک نیروگاه از قبیل توربین، دیگ بخار، کندانسور، و پمپ تغذیه، به طور مجزا، تجهیزات اصلی و جانبی این نیروگاهها مطرح می شود.
    جدول (1-1) : مشخصات نیروگاه های بخاری ایران در سال 1381
    نیروگاه محل جغرافیایی زمان بهره برداری تعداد واحدها قدرت نامی هرواحد MW مجموع تولید MW
    رامین اهواز 78-1358 6 315 1890
    شهیدسلیمی نکا 60-1358 4 440 1760
    شهیدمنتظری اصفهان 78-1363 8 200 1600
    شازند اراک 80-1379 4 325 1300
    بندرعباس بندرعباس 64-1359 4 320 1280
    شهیدرجایی قزوین 1371 4 250 1000
    مفتح غرب همدان 1373 4 250 1000
    اسلام آباد اصفهان 67-1348 5 320*2
    120*1
    5/37*2 835
    تبریز تبریز 68-1365 2 368 736
    بیستون کرمانشاه 1373 2 320 640
    شهیدمنتظرقائم کرج 52-1350 4 25/156 625
    طوس مشهد 1365 4 150 600
    شهیدمدحج اهواز 1354 2 145 290
    بعثت تهران 47-1346 3 5/82 5/247
    شهیدبهشتی لوشان 1352 2 120 240
    ایرانشهر ایرانشهر 81و76-75 3 64 192
    مشهد مشهد 1353 3 60*2 120
    زرند کرمان 1352 2 30 60
    شهیدفیروزی تهران 1338 4 5/12 50


    1-2- سیکل ترمودینامیکی نیروگاه بخاری
    1-2-1- مقدمه
    تقریباً تمام سیستمهایی که انرژی ذخیره شده در سوخت را به انرژی مکانیکی تبدیل می کنند، دارای یک سیال در گردش سیکل هستند. این سیستم ها را میتوان بر اساس نوع سیال در گردش به صورت زیر دسته بندی نمود:
    الف) سیکل های قدرت گازی: سیستم های قدرتی هستند که در آنها، سیال در گردش به صورت گاز است و تغییر فازی در سیکل صورت نمی گیرد. از مهمترین این سیستمها میتوان به توربین های گازی، موتورهای دیزلی و ... اشاره نمود. در این نوع سیکل ها معمولاً هوا و مواد سوختی در شرایط محیط و با نسبت معینی وارد سیستم می شود و پس از طی یک رشته تحول به صورت محصول های احتراق از سیستم خارج میشوند. بدین ترتیب اگر چه این سیستم ها، یک سیکل مکانیکی را طی می کنند، ولی دارای یک سیکل ترمودینامیکی نیستند و اصطلاحاً از نظر ترمودینامیکی به سیستم های باز مشهور هستند.
    ب ) سیکل های قدرت بخاری: سیستم های قدرتی هستند که در آنها، سیال در گردش ضمن طی کردن سیکل، تغییر فاز می دهد و بر خلاف سیکل های قدرت گازی، یک سیکل ترمودینامیکی را طی می کنند. این سیکل ها از نظر ترمودینامیکی یک سیکل بسته را تشکیل می دهند که سیال در گردش، همواره در سیستم، جریان دارد. سیالی که معمولاً مورد استفاده قرار می گیرد آب است که به صورت دو فاز مایع و بخار در سیکل، جریان می یابد. سیکل قدرت بخاری که در نیروگاه های بخاری استفاده می شود، سیکل رانکین است. قبل از تشریح سیکل رانکین نیروگاه بخاری، باید سیکل ایده ال کارنو و دلایل عدم استفاده از آن را در این نیروگاهها بیان نماییم.
    1-2-2- سیکل کارنو با استفاده از بخار آب
    همانطور که از مباحث ترمودینامیک می دانیم سیکل کارنو، یک سیکل ایده‌ال است که بازده سیکل کارنو فقط به درجه حرارتهای منابع گرم و سرد بستگی دارد و به سیال در گردش، ارتباطی ندارد. حال باید دید که چرا چنین سیکلی که دارای بالاترین بازده است، برای سیال بخار آب استفاده نمی شود. بدین منظور، سیکل کارنو به همراه منحنی دما – انتروپی را مطابق شکل (1-1) در نظر بگیرید.
    سیکل کارنو از چهار مرحله اصلی تشکیل شده است:
    1) یک فرآیند دما ثابت برگشت پذیر که گرما از یک منبع با دمای بالا به سیال منتقل می شود (تحول 3-2).
    2) یک فرآیند آدیاباتیک برگشت پذیر انبساطی که با انجام کار در توربین، دمای سیال از دما منبع گرم به دمای منبع سرد کاهش می یابد (تحول 4-3).
    3) یک فرآیند دما ثابت برگشت پذیر که گرما از سیال، به منبع با دمای پایین منتقل می شود (تحول 1-4).
    4) یک فرآیند آدیاباتیک برگشت پذیر تراکمی که با انجام کار، دمای سیال از دمای منبع سرد به دمای منبع گرم افزایش می یابد (تحول 2-1)
    هر یک از فرآیندهای فوق، به طور جداگانه برگشت پذیر هستند و از این رو، سیکل به طور کامل برگشت پذیر است. اما کاربرد سیکل کارنو با استفاده از سیال بخار آب به طور کامل برگشت پذیر است. اما کاربرد سیکل کارنو با استفاده از سیال بخار آب عملی نمی باشد. دلایل غیر عملی بودن سیکل کارنو آن است که اولا تحول 1-4 یک تحول دماثابت و فشار ثابت است که در کندانسور حاصل می گردد، اما نمی توان کیفیت نقطه (1) را که سیال ورودی به پمپ تغذیه است کنترل نمود؛ زیرا اگر نقطه (1) در محل مطلوب و مورد نظر نباشد، فشردن بخار به طور انتروپی ثابت در پمپ تغذیه غیر ممکن است ثانیاً تراکم یک ماده در حالت دو فاز با شرط انتروپی ثابت (مثل ترکیب مایع – بخار در نقطه (1) از سیکل کارنو) تحول مشکلی خواهد بود. ثالثاً امکان انتقال حرارت در دیگ بخار تحت یک تحول دما ثابت وجود ندارد؛ زیرا این کار مستلزم سطح انتقال حرارت بی نهایت می باشد لذا همواره انتقال حرارت، فرآیندی برگشت ناپذیر تلقی می شود.
    1-2-3- سیکل رانکین
    یک نمونه از سیکل ساده رانکین با سیال بخار آب به همراه نمودار (T-S) را مطابق شکل (1-2) در نظر بگیرید.
    در این سیکل، ابتدا آب با فشار کم توسط پمپ تغذیه (BFP) به آب با فشار زیاد تبدیل می شود (تحول 2-1) و آب با فشار زیاد به سمت دیگ بخار منتقل می شود. در دیگ بخار به وسیله انتقال حرارت از منبع گرم به سیال آب، دمای آب ورودی افزایش می یابد. این انتقال حرارت به حدی است که سیال آب ورودی به دیگ بخار، افزایش می‌یابد. این انتقال حرارت به حدی است که سیال آب ورودی به دیگ بخار، تبدیل به بخار اشباع می شود (تحول 3-2) . این تحول به صورت یک تحول با فشار ثابت است. بخار اشباع خارج شده از دیگ بخار، پس از عبور از پره های توربین منبسط می شود که این انبساط، باعث ایجاد کار در طول محور توربین می گردد (تحول 4-3). این تحول، یک تحول آدیاباتیک است که باعث می شود تا سیال خروجی از توربین به صورت بخار مرطوب (بخار همراه مایع) در آید. حرارت موجود در این بخار مرطوب در وسیله ای به نام کندانسور جذب می شود (تحول 1-4).

با افزایش مقدار مصرف بالطبع مهندسین و متخصصین شروع به افزایش ظرفیت نیروگاه ها نمودند و تا حدی که امکانات فنی و تکنولوژی وقت اجازه می داد ظرفیت نیروگاه ها افزایش داده شده است . تعیین ظرفیت نیروگاه بصورت بهینه ، متاثر از فاکتور های متفاوتی می باشد. امروزه بسیار واضح است که قیمت برق تولید شده با افزایش ظرفیت نیروگاه کاهش می یابد . البته باید به این موضوع توجه داشت که برای یک ...

چکیده : تعدد پروژه های مورد نیاز کشور در کلیه بخشها از یک سو و کمبود سرمایه از سوی دیگر سبب میشود تا ارزیابی اقتصادی طرحها به عنوان یکی از مهمترین معیارهای تصمیم گیری جهت پروژه ها مطرح گردد. اساس روشهای ارزیابی اقتصادی طرحها بر برآورد هزینه ها و فایده های طرح استوار می باشد . تلاش برای برآورد دقیق تر هزینه ها و فایده های طرح می تواند در کیفیت ارزیابی اقتصادی تاثیر مثبت فوق ...

ور خورشيد، بزرگ‌ترين منبع پتانسيل انرژي ما اکنون تلف مي‌شود. احتمالاً چندين سال طول مي‌کشد تا علم بتواند روشي را براي کنترل انرژي قدرتمند اشعه خورشيد پيدا کند. موتورها و دستگاههاي خورشيدي براي ما استفاده از حداقل و بخش کوچکي از نور خورشيد را امکان‌پ

یک نیروگاه در نیومکزیکو خورشید نه تنها خود منبع عظیم انرژی است، بلکه سرآغاز حیات و منشاء تمام انرژیهای دیگر است. طبق برآوردهای علمی در حدود ۶۰۰۰ میلیون سال از تولد این گوی آتشین می‌گذرد و در هر ثانیه ۲/۴ میلیون تن از جرم خورشید به انرژی تبدیل می‌شود. با توجه به وزن خورشید که حدود ۳۳۳ هزار برابر وزن زمین است. این کره نورانی را می‌توان به‌عنوان منبع عظیم انرژی تا ۵ میلیارد سال ...

تاريخچه صنعت برق ايران مقدمه در سال 1871 ميلادي ( 1250 هجري شمسي ) ماشين گرام اختراع شد . اين اختراع گامي اساسي در راه ايجاد صنعت برق تجاري بود ، زيرا پس از آن تبديل انرژي مکانيکي (و هر نوع انرژي ديگري که بتوان از آن کار مکانيکي به دست آو

اکنون که بناي آن داريم تا صنعت برق کشور را با سير در گذشته نظاره گرباشيم گذشتن از نام نيروگاه طرشت نام آشناي ديرينه دست اندرکاران ديروز و امروز برق ايران روا نخواهد بود . براستي که برگي ارزنده از تاريخ صنعت برق با اين نام ورق مي خورد . تاريخچه تشکي

اکنون که بناي آن داريم تا صنعت برق کشور را با سير در گذشته نظاره گرباشيم گذشتن از نام نيروگاه طرشت نام آشناي ديرينه دست اندرکاران ديروز و امروز برق ايران روا نخواهد بود . براستي که برگي ارزنده از تاريخ صنعت برق با اين نام ورق مي خورد . تاريخچه تشکي

مصرف انرژي در دنياي امروز به طور سرسام آوري رو به افزايش است . بشر مترقي امروز ، براي توليد آب آشاميدني ، براي توليد مواد غذايي و براي کليه کارهاي روزمره خود به استفاده از انرژي نياز دارد و بدون آن زندگي او با مشکلات فراواني روبرو خواهد بود . طبق

پروژه کارشناسي مقدمه اي بر توليد برق در ايران 1-1 انواع نيروگاه هاي توليد برق : در ميان پرکار برد ترين و مهمترين نيروگاههاي متداول در جهان و ايران ، مي توان از نيروگاه هاي حرارتي نام برد . اين نوع نيروگاهها ، مبدل هايي هسنتد که انرژ

-1- مقدمه نیروگاه های بخاری یکی از مهمترین نیروگاه های حرارتی می باشند که در اکثر کشورها، از جمله ایران سهم بسیار زیادی را در تولید انرژی الکتریکی بر عهده دارند، به طوریکه سهم تولید این نوع نیروگاهها حدود 3/47% کل تولید انرژی کشورمان می اشد. از مهمترین این نیروگاهها در کشورمان می توان به نیروگاههای شهید سلیمی نکا ،‌شهید رجایی قزوین، شهید محمدمنتظری اصفهان، رامین اهواز، اسلام ...

پايان نامه کارشناسي ارشد مديرت محيط زيست – اقتصاد محيط زيست سال تحصيلي 1385- 1386 چکيده توليد برق فوايد زيادي براي جامعه دارد و در عين حال باعث صدمات جبران ناپذير و ناخواسته اي همچون آسيب رساني و تخريب محيط زيست مي شود. براي اينکه

ثبت سفارش
تعداد
عنوان محصول