دانلود تحقیق فیبوناچی رشته ای از اعداد

Word 49 KB 30974 11
مشخص نشده مشخص نشده ریاضیات - آمار
قیمت: ۲,۰۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • سری فیبوناچی رشته ای از اعداد است که توسط لئونارد فیبوناچی دا پیزا ریاضی دان قرن سیزدهم کشف شد (در اصل پس از یک دانشمند ایرانی دوباره کشف شد.) ما کمی از پیشینه تاریخی این مرد اعجاب انگیز نقل می کنیم و بعد از آن در مورد این سری که باعث شهرت او شد صحبت می کنیم. زمانی که اسم کوچک الیوت مشغول تدوین تئوری خود بود مبنای محاسبات خود را سری ریاضی فیبوناچی قرارداد و این سری پایه قواعد موج شد.
        
         در اوایل سال های 1200 لئونارد فیبوناچی از شهر پیزا کتاب معروف خود - کتاب محاسبات - را چاپ کرد که بزرگ ترین کشف تاریخ تا آن زمان را به اروپاییان نشان می داد. در این کتاب سیستم ده دهی برای اولین بار نامگذاری شد و عدد صفر به عنوان مبدا در این مقیاس به کار گرفته شد.
        
         قبل از این تاریخ عددگذاری و شمارش با سیستم یونانی و رومی انجام شد که جمع و تفریق کردن و ضرب و تقسیم آن کار ساده ای نبود. مخصوصاً زمانی که محاسبه گر با اعداد بزرگی سروکار داشت. در پی تلاش های فیبوناچی و همین طور ساده تر شدن محاسبات با این سیستم سرانجام سیستم رومی با سیستم محاسباتی هند و عربی جدید جایگزین شد. معرفی سیستم جدید به اروپا اولین دستاورد ریاضی از زمان سقوط رم باستان در 700 سال قبل بود.
        
         اگرچه بعدها تاریخ فیبوناچی را فراموش کرد اما این ادعای درستی است که بگوییم فیبوناچی بزرگ ترین ریاضی دان قرون وسطی بود.
        
        
        
        سری فیبوناچی
        
         در کتاب لیبرآباکی معمایی حل شده که جواب آن رشته اعدادی به این شرح است:
        
         1 و 1و 2 و 3و 5 و 8 و 13و 21 و 34 و 55 و 89 و 144و الی بی نهایت که امروزه به عنوان سری فیبوناچی شناخته می شود. معما به این شرح بوده است:
        
         در یک محیط بسته از یک جفت خرگوش چند جفت خرگوش می توان به دست آورد. اگر هر جفت در هر ماه یک جفت دیگر به دنیا بیاورد و هر جفت تولیدمثل را از ماه دوم زندگی خود آغاز کند؟
        
         برای حل معما باید متوجه باشیم که هرجفت خرگوش یک ماه طول می کشد تا به حد بلوغ برسد و دوران بارداری نیز یک ماه طول می کشد پس تعداد خرگوش ها در دو ماه اول ثابت می ماند (یک ماه برای به بلوغ رسیدن و یک ماه طول دوره بارداری) پس سری به صورت 1و 1 تا آخر ماه دوم می شود. این جفت طی ماه دوم باردار می شوند و در ابتدای ماه سوم یک جفت دیگر به دنیا می آورند. پس تعداد جفت ها در ماه سوم برابر با 2 است همین جفت در ماه آینده نیز جفت دیگری را به دنیا می آورند جفت دیگر نیز طی این ماه به بلوغ می رسد. پس تا انتهای ماه چهارم سری به صورت 1و1و2و3 می شود تا انتهای ماه پنجم از سه جفت حاضر دو جفت قبلی دوباره باردار می شوند و دو جفت جدید به دنیا می آورند پس تعداد جفت های خرگوش ها به 5 می رسد و سری به صورت 1 و 1و 2و3 و5 می شود. در ماه بعدی سه جفت از خرگوش ها فرزند به دنیا می آورند و سری به صورت 1و 1و 2و3 و5 و8 در می آید و به همین ترتیب پیش می رود.
        
        
        
        برخی از جذابیت های ریاضی سری فیبوناچی
        
         1- حاصل جمع هر دو عضو پیاپی در این سری عضو بعدی (بزرگ تر) در این سری می شود. به ترتیب 1 به علاوه یک می شود 2 که دو به علاوه یک می شود سه که سه به علاوه 2 می شود پنج و باز پنج به علاوه 3 می شود 8 و به همین ترتیب ادامه می یابد.
        
         2- یکی از ویژگی های این سری این است که هر عضو به توان دو برابر است با عضو قبلی ضرب در عضو بعدی به علاوه یا منهای 1:
        
         .....،55،34،21،13،8،5،3،2،1،1
        
        1+8*3= 5 T5
        
        1-3 1*5= 8 8 T
        
        1+12*8 = 13* 13
        
         .....،
        
         3- عدد فی، نسبت طلایی: بعد از پشت سر گذاشتن چند عضو از اعضای سری نسبت هر عضو به عضو بزرگ تر بعدی مانند نسبت 0618/0 به 1 می شود و هر عضو نسبت به عضو کوچک تر قبلی مانند نسبت 1618/1 به 1 می شود. با پیش روی در سری این نسبت دقیق تر می شود. این نسبت را فی نام گذاری کردند که عددی لایتناهی است... 0618034/0
        
         فی تنها عددی است که حاصل جمع آن با عدد یک برابر معکوس آن است:
        
         0618/1=06188/0 + 1
        
         این سری جذابیت های ریاضی دیگری هم دارد که در اینجا به جهت اطاله کلام از ذکر آن ها خودداری می کنیم. آن ها به این عدد نسبت طلایی می گویند
        
         هر طولی را می توان با استفاده از این نسبت به دو قسمت کوچک تر و بزرگ تر تقسیم کرد که نسبت قسمت بزرگ تر به قسمت کوچک تر برابر 06158/0 باشد.
        
         این نسبت در طبیعت به کرات دیده می شود. ویلیام هوفر در دسامبر سال 1975 در مجله اسمیتسون می نویسد:... نسبت 0618034/0 به 1 پایه ریاضی شکل های روی کارت های بازی و معبد خدایان یونان- گل آفتابگردان میوه درخت کاج گلدان های یونانی و شکل منظومه راه شیری (اسپیرال) است. خیلی از هنرها و صنایع دستی یونانی ها مبنایش همین نسبت است.
        
         در حقیقت بدن انسان نیز از هر نظر چه حجم و نگاه خارجی و چه از نظر ساختار اعصاب یکی از تابلوهای زیبای این نسبت الهی است.

     

خواص دنباله فيبوناچي و عدد طلايي 1-1- تاريخچه لئوناردو دا پيزا يا به عبارت مشهورتر فيبوناچي يکي از بزرگترين رياضي دانان اروپا در سال 1175 در شهر پيزا متولد شد . وي به علت حرفه پدريش که بازرگاني بود به کشورهاي بسياري از جمله مصر و سوريه و ... مسا

اعداد دنياي اعداد بسيار زيباست و ما مي توانيم در آن شگفتي هاي بسياري را بيابيم. در ميان برخي از آنها اهميت فوق العاده اي دارند، يکي از اين اعداد که سابقه ي آشنايي بشر با آن به هزاران سال پيش از ميلاد مي رسد، عددي است به نام نسبت طلايي يا Golden Rati

نسبت طلایی دنیای اعداد بسیار زیباست و شما می توانید در آن شگفتیهای بسیاری را بیابید. در میان اعداد برخی از آنها اهمیت فوق العاده ای دارند، یکی از این اعداد که سابقه آشنایی بشر با آن به هزاران سال پیش از میلاد میرسد عددی است بنام "نسبت طلایی" یا Golden Ratio. پاره خطی را در نظر بگیرید و فرض کنید که آنرا بگونه ای تقسیم کنید که نسبت بزرگ به کوچک معادل نسبت کل پاره خط به قسمت بزرگ ...

تاريخچه عدد صفر يکي از معمول ترين سئوالهائي که مطرح مي شود اين است که: چه کسي صفر را کشف کرد؟ البته براي جواب دادن به اين سئوال بدنبال اين نيستيم که بگوئيم شخص خاصي صفر را ابداع و ديگران از آن زمان به بعد از آن استفاده مي کردند. اولين نکته شايان

يکي از معمول ترين سئوالهائي که مطرح مي شود اين است که: چه کسي صفر را کشف کرد؟ البته براي جواب دادن به اين سئوال بدنبال اين نيستيم که بگوئيم شخص خاصي صفر را ابداع و ديگران از آن زمان به بعد از آن استفاده مي کردند. اولين نکته شايان ذکر در مورد عدد صفر

بعد از دوران یونان باستان، نظریه اعداد در سده شانزدهم و هفدهم با زحمات ویت Viete، باشه دو مزیریاک Bachet de Meziriac، و بخصوص فرما دوباره مورد توجه قرار گرفت. در قرن هجدهم اویلر و لاگرانژ به قضیه پرداختند و در همین مواقع لوژاندرLegendre (1798)و گاوسGauss (1801) به آن تعبیر علمی بخشیدند. در ۱۸۰۱ گاوس در مقاله Disquisitiones Arithmeticæ حساب نظریه اعداد مدرن را پایه گذاری کرد. ...

تحقيق راجع به کالين مکلورن مقدمه عدد واژه اي است که بيشترين سهم را در علوم و دانش بشري بر عهده دارد و در آن کلمه اسرار بيشماري نهفته است و علم رياضيات که از منطق انکار ناپذيري برخوردار است بر پايه ي همين کلمه به وجود آمده است و تکامل يافته است.

شاید زمانی که لوکاپاچولی درسال 1494 میلادی پایه های اصلی حسابداری را در اروپا بنا می کرد حتی گمان نمی کرد که روزی حسابداری تا این حد پیشرفت کند. اگر بخواهیم حسابداری و تاریخچه آن را بررسی کنیم باید به سالها پیش از لوکاپاچولی برگردیم. خوارزمی، دانشمند معروف ایرانی برای اولین بار درباره مفهوم صفر، شیوه نگارش نشانه ای اعداد و شمارش دهدهی در رساله " جبر و مقابله " توضیحاتی را داد و ...

یک طراحی مهندسی به تابعی به شکل زیر می رسد: که در آن x و y پارامترهایی هستند که باید انتخاب شوند و یک تابع است، که مربوط به مخارج ساخت و ساز است و باید مینیمم شود. روش های قابل استفاده برای بهینه سازی کردن نقاط را در این فصل مطالعه می کنیم. مقدمه: یک کاربرد مهم حساب دیفرانسیل، پیدا کردن مینیمم موضعی یک تابع است. مسائل مربوط به ماکزیمم کردن نیز با تئوری مینیمم کردن قابل حل هستند. ...

پيشگفتار پيشرفت عظيم علم و صنعت در قرون گذشته تا حد زيادي مرهون گسترش رياضيات است. اين گسترش را مي توان به سه دوره تاريخي تقسيم نمود که هر دوره به نقطه اوجي رسيده ،سپس توقفي طولاني پيش آمده و نگاه حرکت و اوجگيري مجددا شروع شده است. رياضيات

ثبت سفارش
تعداد
عنوان محصول