دانلود تحقیق آشنایی یا انواع کالری متر

Word 45 KB 35608 8
مشخص نشده مشخص نشده فیزیک - نجوم
قیمت قدیم:۱۲,۰۰۰ تومان
قیمت: ۷,۶۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • اصولاً کالریمتر یک روش اساسی اندازه گیری دوز جذب است ، ولی غیر حساس بوده و معمولاً نیاز به وسائل پیچیده ای دارد ، به آسانی قابل حمل نبوده و به طور تجاری در دسترس نمی باشد ، به کندی عمل نموده و از زمانی که برای اندازه گیری تنظیم می شود مدتی طول می کشد تا به پایداری حرارتی برسد .

    در نتیجه کالریمتر معمولاً برای کارهای استاندارد و یا کاربردهای تحقیقاتی محدود می شود .

    کالریمترها از نظر اندازه گیری به دو نوع هم دما ( ایزوترم ) و غیر هم دما تقسیم می شوند .

    کالریمترهای هم دما ، مانند کالریمتر یخی ، تغییرات فازی در یک درجه حرارت مشخص را که در اثر جذب انرژی به وجود می آید ، اندازه گیری می نمایند .

    حال آنکه کالریمترهای غیر هم دما مقدار انرژی جذب شده را توسط تغییرات درجه حرارت اندازه گیری نموده ، و معمولاً به دو صورت با درجه حرارت محیط ثابت و بی دررو ( آدیاباتیک ) مورد استفاده قرار می گیرند .

    کالریمتر های هم دما : از دیر باز برای اندازه گیری فرآیند های حرارتی طولانی مدت استفاده می شده است .

    مخلوط آب و یخ جدا شده از محیط اطراف ، قادر است درجه حرارت ثابت و تکرارناپذیری تا حدود ˚C4-10 را ایجاد نماید .

    در این گونه کالریمترها ماده جاذب انرژی مخلوط آب و یخ بوده که عملاً هیچگونه تبادل انرژی با پوشش آب_یخ اطراف آن نداشته و با جذب انرژی تغییراتی در حجم یخ کالریمتر در اثر تغییر فاز یخ به آب به وجود می آید .

    بنابراین چنانچه آب و یخ در تعادل ترمودینامیکی باشند ، مقدار یخی که تغییر فاز می دهد متناسب با انرژی توزیع شده در ماده جاذب است .

    این نوع کالریمترها در اندازه گیری های میکروکالیمتری( برای اندازه گیری اشعه ) مناسب نیستند .

    کالریمترهای غیر هم دما : الف _ با توجه حرارت محیط ثابت : در این نوع کالریمترها ماده جاذب انرژی در پوششی با درجه حرارت ثابت و یکنواخت محصور بوده و معمولاً از آن برای اندازه گیری فرآیندهای حرارتی کوتاه مدت ، خصوصاً با تندی ثابت استفاده می شود .

    مزیت این کالریمترها در این است که انرژی مبادله شده توسط جاذب کالریمتر با پوشش توسط قوانین شار انرژی قابل محاسبه و اصلاح است .

    برای پوشش درجه حرارت ثابت معمولاً از مخلوط آب و یخ استفاده می شود .

    ب _ کالریمترهای بی دررو : چنانچه جسمی هیچگونه تبادل حرارتی با محیط نداشته باشد ، بنا به تعریف تعادل بی دررو دارد .

    و این در صورتی است که درجه حرارت جسم و محیط اطرافش همواره یکسان باشد .

    در یک سیستم کالریمتری چنانچه تغییرات درجه حرارت در اثر اتلاف حرارت نسبت به درجه حرارت قابل اندازه گیری ناچیز باشد ، عملاً آن را سیستم بی دررو می نامند .

    در این سیستم ها ماده ای که دوز جذب در آن اندازه گیری می شود ، به نام ماده جاذب یا عنصر حرارتی ، با توده ای از مواد ، معمولاً به نام پوشش ، محصور شده و مجموعه در داخل جرم بیشتری از مواد به نام محافظ محصور وجدا می شود .

    بسته به نحو کار کالریمتر در داخل یا برخی قسمتها ، اعم از عنصر حرارتی ، پوشش و حفاظ وسایل حساس به درجه حرارت ( ترمیستر یا ترموکوپل ) و گرم کن الکتریکی نصب شده است .

    با استفاده از این وسائل پوشش اطراف ماده جاذب به گونه ای کنترل می شود که همواره درجه حرارت ماده جاذب را داشته باشد .

    مزیت این سیستم ها کاهش اتلاف حرارتی و اشکال آن عدم امکان ارزیابی یا اصلاح این اتلاف ، هر چند جزئی ، می باشد .

    ج – کالریمترهای شبه بی دررو : در این سیستم برای کاهش اتلاف حرارت ، درجه حرارت پوشش به گونه ای تغییر داده می شود که همواره تبادل حرارتی با ماده جاذب کالریمتر ناچیز باشد .

    به علاوه در این سیستم می توان اتلاف حرارتی هر چند ناچیز را با استفاده از منحنی درجه حرارت _ زمان در عنصر حرارتی ارزیابی نمود .

    اصول این نوع کالریمتر را می توان به راحتی با شکل شماتیکی10-1 توضیح داد .

    ملاحظه می شود عنصر حرارتی ( ماده جاذب کالریمتر ) توسط پوشش احاطه شده و تغییر درجه حرارت پوشش توسط حفاظ اطراف آن و از طریق یک مکانیزم کنترلی بیرونی انجام می شود .

    در این شکل منحنی های تغییرات درجه حرارت ماده حاجب ، پوشش و حفاظ اطراف آن نسبت به زمان برای یک اندازه گیری کالریمتری نشان داده شده است .

    درجه حرارت حفاظ قبل از آغاز اندازه گیری برای مدتی ثابت نگه داشته می شود تا درجه حرارت ماده جاذب و پوشش ان نیز به درجه حرارت تعادل برسد .

    چنانچه این زمان به قدر کافی باشد ، میزان تغییرات درجه حرارت به مقادیر بسیار ناچیزی کاهش می یابد .

    به عبارت دیگر مبادله حرارت با پوشش ناچیز می شود .

    در این لحظه می توان تابش پرتو به کالریمتر را آغاز نمود .

    همزمان با تابش پرتو با تندی معین ، بایستی درجه حرارت پوشش نیز با اعمال انرژی با همان تندی افزایش یابد.

    زیرا چنانچه افزایش میزان درجه حرارت در هر دو یکسان باشد ، مبادله حرارت کماکان ناچیز باقی می ماند .

    برای این کار درجه حرارت حفاظ در طول تابش پرتو بایستی درجه حرارت ماده جاذب را به طور خطی تعقیب نموده و با همان تندی افزایش یابد .

    کنترل بی دررو درجه حرارت حفاظ می تواند به طور دقیق توسط کنترل فیدبک خودکار انجام شود .

    در انتهای زمان تابش اشعه ، به طور همزمان کلیه اعمال حرارتی قطع می شود .

    در این حالت سیستم در وضعیت جدیدی از حالت تعادل بوده و می تواند اندازه گیری جدیدی را شروع نماید .

    در صورت کنترل صحیح درطول اندازه گیری مبادله ناجیز حرارت نبایستی تغییر نماید .

    اگر مبادله حرارتی بین ماده جاذب و پوشش در آغاز آزمایش صفر بوده و میزان افزایش درجه حرارت در هر دو دقیقاً یکسان باشد، سیستم آدیاباتیک کامل بوده و نیازی به هیچگونه اصلاحی ندارد .

    ولی عملاً آغاز آزمایش مبادله حرارتی ناچیزی وجود داشته و میزان افزایش درجه حرارت جاذب و پوشش و حفاظ کاملاً یکسان تنظیم نمی شود ، بنابراین در انتهای اندازه گیری مبادله حرارتی متفاوتی وجود دارد .

    با ثبت منحنی های درجه حرارت –زمان در کالریمتر و مشخص شدن سابقه درجه حرارت پوشش ، هر گونه اتلاف انرژی می تواند ارزیابی شده و اصطلاحاً مربوط به آن در محاسبه دوز جذب اعمال شود .

    کالریمتری که در 1956 برای اندازه گیری دوز جذب استفاده شد ، یک کالریمتر همگن بود که به روش شبه بی دررو عمل می نمود .

    در این نوع کالریمترها جرم کمی از ماده جاذب با جرم بیشتری از همام ماده محصور شده و به وسیله یک شکاف باریک و تخلیه شده از هوا از نظر حرارتی جدا می گردد .

    پوشش به نوبه خود با جرم بیشتری از مواد به صورت حفاظ محصور و جدا می شود .

    هنگام تابش به روش شبه بی دررو عمل شده و درجه حرارت پوشش دقیقاً درجه حرارت عنصر حرارتی را تعقیب می نماید .

    با افزایش درجه حرارت پوشش تا درجه حرارت عنصر حرارتی ، می توان اتلاف حرارتی آن را کاهش داد .

    اتلاف حرارت از پوشش به طرف حفاظ پدیده مرتبه دوم است .

    در این کالریمترها هنگام درجه بندی مقدار معینی انرژی حرارتی به گرم کن نصب شده در عنصر حرارتی داده می شود .

    چنانچه عنصر حرارتی در کالریمتر آب با ظرفیت حرارتی ویژه در حدود J/kg˚C4200 باشد ، برای دوز جذب 2 گری ( rad 200 )‌، معادل دوز جذب روزانه در یک نمونه رادیوتراپی ، افزایش درجه حرارت برابر ˚C 0005/0 خواهد بود .

    برای اندازه گیری این درجه حرارت با دقت 1% بایستی سیستم اندازه گیری قادر به آشکارسازی تغییرات درجه حرارت تا حدود چند میلیونیم درجه سانتی گراد باشد .

    اگر ماده تحت تابش مانند بسیاری از کالریمترها کربن باشد ، افزایش درجه حرارت حدود 6 مرتبه بزرگتر خواهد بود ، ولی هنوز اندازه گیری دقیق دارای مشکلاتی می باشد .

    در اندازه گیری مقدار کم انرژی ، یک تبادل بسیار ناچیز حرارت بین جرم جدا شده با محیط اطرافش می تواند تاثیر قابل توجهی بر روی اندازه گیری داشته باشد .

    چنانچه برای بهتر مشخص نمودن نقطه اندازه گیری عنصر حرارتی کوچک ساخته شود ، نسبت سطح به حجم آن افزایش یافته و این امر سبب تشدید پدیده تبادل حرارتی می شود .

    در عمل دلایل دیگری هم برای عدم کاهش جرم عنصر حرارتی وجود دارد .

    همان گونه که قبلاً ذکر شد ، عنصر حرارتی نیاز به ترمیستور و گرم کن دارد و اینها از موادی متفاوت با آن ساخته شده و بنابراین پرتو را به طریقه دیگری جذب می نمایند .

    بنابراین جرم عنصر حرارتی در مقایسه با جرم مواد داخل آن بایستی بزرگ باشد تا سبب اختلال جدی در اندازه گیری ها نشود .

    پیچیدگی بیشتر به خاطر آن است که تمام آثار حرارتی در عنصر حرارتی الزاماً به خاطر انرژی انتقالی ، آن گونه که در تعریف دوز جذب ذکر شده ، نمی باشد .

    تابش می تواند در عنصر حرارتی تغییرات شیمیایی حرارت زا یا حرارت گیر ایجاد نماید و یا انرژی می تواند در شبکه کریستالی ذخیره شود .

    جنس عنصر حرارتی می بایستی با دقت انتخاب شود به طوری که دارای نقص حرارتی ناچیز و یا دقیقاً شناخته شده باشد .

    معادله اصلی که دوز جذب D ، در یک نقطه در عنصر حرارتی را با انرژی آزاد شده Eh به صورت حرارت ، و انرژی ذخیره شده Es به صورت شیمیایی یا فیزیکی ، در عنصر حرارتی ارتباط می دهد ، به صورت زیر است : Es نقص حرارتی نامیده شده و چنانچه انرژی در شبکه کریستالی ذخیره شده و یا یک واکنش انرژی خواه به وجود آید مثبت است .

    مقدار آن برای واکنشهای انرژی زا منفی می باشد .

    از این جهت مواد ساده مانند فلزات یا کربن کمترین مشکل را دارند .

    چنانچه ماده کالریمتر متفاوت از ماده ای باشد که در نظر است دوز جذب در آن به دست آید ، انتقال دوز جذب از ماده کالریمتر به ماده مورد نظر دارای مشکلاتی می باشد .

    اولاً مواد متفاوت به طرق مختلف برروی میدان تابش تاثیر گذاشته و تولید شارهای تابشی متفاوتی در دو ماده می نماید .

    ثانیاً بر طبق ضرائب جذب انرژی و قدرت توقف در مواد مختلف ، نسبتهای مختلفی از انرژی تابشی جذب می شود .

    مشکل دوم در تمام دوزیمترهائی که مواد جاذب آنها متفاوت از ماده دوزیمتر است ، مشترک می باشد .

    ساختن کالریمترهای دوز جذب مشکل است ، زیرا از چندین قسمت ساخته شده که می بایستی از یکدیگر از نظر حرارتی نارسانا بوده ولی تمامی آنها دارای سیمهای الکتریکی برای سنسورهای درجه حرارت و المانهای حرارتی می باشند .

    یک کالریمتر ساده دوز جذب آب توسط ( 1980 ) Domen معرفی شده که اساساً شامل یک ترمیستور با قطر mm2/0 بین دو لایه بسیار نازک پلی اتیلن می باشد ، و به طور افقی در داخل چهارچوب پلاستیکی نصب شده و درداخل یک تانک آب جدا قرار می گیرد .

    پرتو از بالا به سطح آب می تابد و بنابراین لایه پلی اتیلن مانع از جابه جایی آب در اثر گرادیان حرارتی در داخل تانک می شود .

    نفوذپذیری حرارتی کم آب ، امکان اندازه گیری تندی دوز جذب در آن را تا حدود Gy.min-1 4 ( 400 راد در دقیقه‌ ) با دقت 5% فراهم می نماید .

    اندازه گیری با این وسیله پس از توسعه در ساختمان و نحوه کار آن مقادیر دوز جذب پرتوCo 60 را حدود 5/3 % بیشتر از مقادیر اندازه گیری شده با کالیمتر کربنی نشان می دهد .

    این اختلاف به نقص حرارتی در آب مربوط شده و استفاده بیشتر از کالیمترهای آبی نیاز به تحقیقات بیشتر در زمینه نقص حرارتی دارد .

    در دوزیمتری به روشهای کالریمتری مشکلات اصلی عدم حساسیت آنها و کمی اطمینان از تبادل حرارتی ناچیز بین عنصر حرارتی و محیط اطرافش در شرایط آزمایش می باشد .

    در حالتهای ویژه ای این مسائل می تواند نادیده گرفته شود .

    مثلاً هنگام اندازه گیری پرتوهای شدید در پرتو پالسی می توان از کالریمتر استفاده نمود .

    زیرا مقدار زیادی انرژی برای جذب شدن وجود داشته و زمان تابش به قدری کوتاه است که فرصت کمی برای تبادل حرارتی وجود دارد .

    البته برای اندازه گیری تندی دوز جذب از روشهای دیگری استفاده می شود .

    به هر حال از دوزیمتری به روش کالریمتری در بخش کوچکی از اندازه گیری ها استفاده شده و بایستی روشهای دیگری با حساسیت بیشتر مورد مطالعه قرار گیرد .

    Perkin Elmer DSC-7 Calorimeter with Chiller unit and cables - Used, power tested Seiko Instruments SSC/5200 SII DSC220C Differential Scanning Calorimeter System Aluminum Pan for Perkin Elmer DSC-7 Calorimeter

  • فهرست:

    ندارد
     

    منبع:

    ندارد

کالری‌سنجی یا کالریمتری (به انگلیسی: Calorimetry) یکی از روش‌های آزمایشگاهی است که در شیمی کاربرد فراوان دارد. در این روش با تعیین مقدار گرمای انتقال یافته از سامانه به محیط یا برعکس ویژگی‌های دیگر مواد را تعیین می‌کنند. از جمله کاربردهای کالری‌سنجی در تعیین ظرفیت گرمایی ویژه دمای گذار فاز تغییرات آنتالپی برای مواد معدنی و یا آلی از جمله پلیمرها می باشد. دستگاهی کالریمتر: است که ...

چکیده آلومنیا تقویت شده با مگنزیا و پودرهای نانوی زیرکونیا تقویت شده با اتیریا به صورت مصنوعی با استفاده از ساکروز به عنوان عامل چلاتین و مواد از پیش تهیه شده اند محلول های آبی نیترات آلومینیوم، نیترات منیزیم، نیترات استیریوم و نیترات زیرکونیل تولید می شوند. پارامترهای سنتز آنها با تغییر نسبت ساکروز به یون فلزی، زمان کلین کردن و دمای تولید این نانو پودرها بهینه سازی می شود. ...

آلياژ نايتينول از دو عنصر نيکل و تيتانيم با درصد اتمي مساوي يا نزديک به هم درست شده است . اين آلياژ به سبب داشتن خواص منحصر به فردي همچون حافظه داري ، زيست سازگاري ، نرمي و سفتي انتخابي مورد توجه مهندسين صنايع جديد و متخصصين رشته هاي پزشکي و بيومواد

) استانداردهای غذایی استاندارد سابقه بسیار طولانی داشته و بشر اولیه با الهام از پدیده های طبیعی مانند گردش ایام، فصول چهارگانه سال و روز و شب، زندگی خود را استاندارد می کرده است. استانداردها در سطوح مختلفی تدوین می شوند از جمله سطح استانداردهای بین المللی است که توسط سازمان بین المللی است که توسط سازمان بین المللی استاندارد International Standard Organization با نام مخفف ISO ...

گرما هنگامی که دو جسم با دماهای متفاوت در تماس با یکدیگر قرار گیرند انرژی از جسم گرمتر به جسم سرد تر میرود به انرژی که در این شرایط منتقل می شود انرژی گرمایی می گویند الف - گرما و حرکت مولکولی میدانید که ماده از مولکولها تشکیل شده است این مولکولها ساکن نیستند بلکه دائما در حال حرکت هستند نوع حرکت آنها بستگی به حالت ماده دارد یکی از اثرهای گرما بر ماده این است که حرکت آنها را ...

مقدمه : شیمی در یک نگاه شیمی مطالعهٔ ساختار، خواص، ترکیبات، و تغییر شکل مواد است. این علم مربوط می‌شود به عناصر شیمیایی و ترکیبات شیمیایی که شامل اتمها، مولکولها، و کنش و واکنش میان آنهاست. جدول تناوبی و فهرست ترکیبات را هم مشاهده کنید. واژه شیمی خود داستان درازی دارد.ریشه این نام در واژه کیمیاست. خاستگاه واژه کیمیا را برخی از یونانی دانسته‌اند و چیستی کار کیمیاگری دگرساختن مس ...

مشخصه طرح : عنوان : طرح تولید سوسیس و کالباس تعریف : سوسیس و کالباس فرآورده های گوشتی حاوی نمک و چاشنی می باشد که در یک لفاف استوانه ای بسته بندی شده اند . ظرفیت تولید : 2700 تن در سال انواع سوسیس و کالباس 2-1 فرآیند تولید :بعد از آماده سازی مواد اولیه عمل اختلاط طبق فرمولاسیون صورت گرفته سپس به قسمت پرکن و بعد از آن به بخش پخت یا دود خواهد رفت سپس سرد شده وبسته بندی میگردد. 3-1 ...

آينده انرژي از انقلاب صنعتي يعني 200 سال پيش تاکنون بشر به سوخت فسيلي وابسته بوده است حتي تصور تغيير اين وضعيت نيز دشوار است. احتمال کاهش مصرف وجود دارد اما توقف استفاده از سوخت فسيلي غيرممکن است زيرا مسلماً جايگزين مناسبي براي آن وجود ندارد. غي

مبدلهای حرارتی : فرایند تبادل گرما بین دو سیال با دماهای متفاوت که توسط دیواره جامدی از هم جدا شده اند در بسیاری از کاربرد های مهندسی روی می دهد . وسیله ای را که برای این تبادل به کار می رود مبدل گرمایی میگویند ، و موارد کاربرد آن را در سیستم های گرمایش ساختمان ها ، تهویه مطبوع ، تولید قدرت ، بازیابی گرمای هدر رفته ، و فراوری شیمیایی می توان یافت .ما درفرآیندهای شیمیایی و فیزیکی ...

سنسورهای حرارتی یا ترمیستور چیست؟ ترمیستورها ، حسگرها یا سنسورهای نیمه هادی (نیم رساناهایی) هستند که دارای ضریب مقاومت گرمایی زیادی بوده و در صنعت و مهندسی کاربرد خیلی زیادی دارند. برا ی اندازه گیری و کنترل درجه حرارت از این ترمیستورها استفاده های زیادی می شود. ترمیستور مقاومت حساس به دما است. کلمه thermistors مخفف و خلاصه شده عبارت temperature sensitive resistors است. در کنترل ...

ثبت سفارش
تعداد
عنوان محصول