دانلود تحقیق ساخت پیزوالکتریک فلزی با استفاده از فناوری نانو

Word 33 KB 10426 10
مشخص نشده مشخص نشده فیزیک - نجوم
قیمت قدیم:۷,۱۵۰ تومان
قیمت با تخفیف: ۵,۰۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • پیزوسرامیک ها دستهایی از مواد سرامیکی هستند که با اعمال ولتاژ، تغییر طول میدهند. در خبر زیر که برگرفته از خبرنامه نانوتکنولوژی، شماره 37 است به تحولی در عرصه پیزوالکتریکها پرداخته شده است:

    محققین آلمانی و اتریشی موفق به ساخت فلزی نانوحفره‌ای شده‌اند که رفتاری همانند سرامیک از خود نشان می‌دهد. این فلز، مشابه یک پیزوسرامیک با اعمال ولتاژ خارجی، حدود 0.15 درصد افزایش طول می‌یابد.

    ویب مولر، یکی از این محققین ابراز داشت: "با تزریق یا تخلیه الکترونها، باندهای اتمی سطح ماده منبسط یا منقبض می‌شوند و از آنجا که سطح این ماده بسیار زیاد است، این کار منجر به انبساط ماکروسکوپی ماده می‌گردد. به طوریکه نتیجه آن در برخی از نمونه‌ها با چشم غیرمسلح نیز قابل مشاهده است."

    این گروه تحقیقاتی، نوعی پلاتین نانوحفره‌ای را با استفاده از پلاتین سیاه با اندازه‌ دانه‌های 6 نانومتر ساختند. آنها ولتاژ خارجی را در حضور یک الکترولیت آبی مانند اسید سولفوریک، اسید کلریدریک یا محلول هیدورکسید پتاسیم اعمال نمودند. محلول هیدورکسیدپتاسیم، بیشترین کشش را در نمونه‌ها ایجاد نمود.

    به گفته این محققین، پیزوسرامیکها بهطور گسترده بهعنوان مواد راه‌انداز در چاپگرهای جوهرافشان و در نازلهای تزریق سوخت در اتومبیل‌ها مورد استفاده قرار می‌گیرند. مزیت این ماده جدید این است که با اعمال ولتاژ کمتر، به اندازه پیزوسرامیکها کش می‌آید. قابلیت عملیات این ماده جدید در ولتاژ پایین (حدود یک ولت، در مقایسه با صدها یا هزاران ولت برای پیزوسرامیکها) و نیز امکان استفاده از آن در محیط آبی، امکان کاربرد آن در ادوات میکروسیالاتی همچون شیرهای عملیاتی را فراهم می‌آورد.

    حتی این محققین احتمال می‌دهند که بتوان از این ماده جهت کاربرد در تماس مستقیم با سیالات زیستی در سیستمهای زنده نیز استفاده نمود.

    طبق نظر این محققین، اثر اعمال ولتاژ بر روی این ماده با سرامیکهای معمولی، پلیمرها و نانولوله‌ها از چند جهت متفاوت  است: اول اینکه این پدیده یک اثر سطحی است در حالیکه در دیگر موارد، ولتاژ اعمال شده به حجم مواد اعمال می‌شود. دوم اینکه کشش این ماده در تمامی جهات یکسان است و این اثر موجب تغییر حجم می‌شود.

    مولر بیان داشت: "تغییر حجم در نمونه‌های ما (بیش از 45 درصد) بسیار بیشتر از سرامیکها است. زیرا جهت کشش در سرامیکها بسته به جهتهای کریستالوگرافی، تغییر می‌کند و این امر موجب می‌شود تغییر حجم کلی در آنها به حدود صفر برسد."

    اما تولید فلزاتی که رفتارشان همانند سرامیکها باشد تازه شروع شده است و بنا به ادعای این محققین، این روش می‌تواند دریچه‌ای به دسته جدیدی از مواد با خواص اپتیکی و مغناطیسی قابل تنظیم بگشاید.

    مولر در تشریح این پدیده چنین بیان می‌دارد:" اتمهایی با عدد اتمی بالا، تعداد الکترونهای بسیار زیادی دارند و همین امر موجب تنوع خواص در آنها می‌شود. تاکنون این خواص کمابیش ثابت در نظر گرفته می‌شد. با این کار جدید می‌توان بهسادگی با افزودن یا حذف الکترونبه اتمها (با اعمال ولتاژ) موقعیت آنها را در جدول تناوبی به چپ یا راست منتقل نمود." 

    سرامیک های پیزوالکتریک وکاربردهای آن

    پیزوالکتریکها گروهی از سرامیکهای پیشرفته هستند که کاربردهای وسیعی در صنایع الکترونیک، صنایع مصرفی، پزشکی و صنایع نظامی دارند. کاربرد سنسورهای پیزوالکتریکی در صنایع مختلف از جمله صنایع غذایی، دارویی، لوازم برقی و خودرو در حال پیشرفت است. در زیر گزارشی از کاربرد، مقیاس بازار و مسائل فنی این مواد نقل شده و سپس تحلیلی راجع به وضعیت این تکنولوژی در کشور ارائه شده است:

    گزارش فنی اقتصادی (مأخذ: خبرنامه انجمن سرامیک ایران، شماره 7 ، صفحات 12و13)

    پیزوالکتریسیته توسط پیروژاک کوری در سال 1892 کشف گردید و از واژه یونانی Piezin به معنی "فشار" مشتق میشود. اعمال فشار به برخی کریستالها مانند کوارتز یا برخی سرامیکها الکتریسیته تولید میکند. فشار یا تنش مکانیکی وارد شده به برخی کریستالها باعث جابه­جایی دو قطبیهای ایجاد شده و پدید آمدن میدان الکتریکی میشود. آرایش یونهای مثبت و منفی، تعیینکننده ایجاد یا عدم ایجاد اثر پیزوالکتریسیته است. به همین دلیل اثر پیزوالکتریسیته یا ایجاد جریان الکتریسیته القایی توسط وارد کردن فشار، در مواد کریستالی ا?نیزوتروپ رخ می­دهد؛ یعنی در آن دسته از کریستالهایی که مرکز تقارن ندارند. زیرا در کریستالهای متقارن هیچ ترکیبی از تنشهای یکنواخت نمیتواند سبب جدا شدن بارهای الکتریکی شود.

     

    اگر یک ماده به عنوان مثال یک سرامیک، پیزوالکتریک باشد، وقتی تحت تاثیر فشار قرار میگیرد در سطح آن بار الکتریکی تولید میشود؛ یا وقتی در میدان الکتریکی قرار میگیرد تغییر شکل مکانیکی مییابد. میزان بار الکتریکی یا تغییر شکل مکانیکی به ترکیب ماده بستگی دارد. در ساختمان این سرامیکها موادی نظیر: اکسید سرب، تیتانیا، زیرکونیا و غیره وجود دارند که بسته به نوع کاربرد این مواد با نسبتهای مختلف با هم مخلوط میشوند. با تغییر ترکیب و ابعاد قطعات میتوان پیزوسرامیکها را برای کاربردهای مختلف طراحی کرد.

    کاربردها

    موادی که فشار را به انرژی الکتریکی و انرژی الکتریکی را به انرژی حرکتی تبدیل میکنند در موارد مختلفی از جمله در مبدلهای پیزوالکتریک استفاده میشوند. حسگرهای (Sensor) کوچک، کم خرج، حساس و کارآمد با رشد قابل توجهی امروزه در صنعت خودرو اهمیت یافتهاند. مدلهای جدید خودرو بین 18 تا 30 سنسور دارند که شامل سنسورهای فشار برای کنترل میزان فشار وارده به صندلیها، سنسورهای دما برای کنترل میزان گرما و شرایط جوی، سنسورهای جریان برای ورودی هوای خودرو و سنسورهای شتاب برای سیستم ضد قفل ترمزی(ABS) میباشند. در صنایع پیشرفته نیز به طور وسیعی از این سنسورها استفاده می­شود؛ مثلاً صنایع نفت، غذایی و آشامیدنی و دارویی همگی از این سنسورها برای کنترل سطح جریان سیال (flow and level monitoring) استفاده میکنند. سنسورهای جریان سیال و سطح و مبدلهای دوپلر، تخلیه اتوماتیک مخازن نفت و خطوط لوله را کنترل میکنند.

     

    صنایع دیگر از سنسورها برای تستهای غیر مخرب استفاده میکنند؛ مانند تستهای غیر مخرب تیرهای فولادی، خطوط راهآهن و بدنه هواپیما. در بخش مراقبتهای پزشکی نیز از پیزوسرامیکها در مبدل تصویرگرهای تشخیصی و مونیتورهای fetal heart استفاده میشود که هزینه پایین و ایمنی بالا نشان کارایی این فراورده است. کاربردهای دیگر، شامل تفنگهای لیزری برای درمان آب مروارید چشم، چاقوهای کوچک جراحی و کالبدشکافی، متهها و پاککننده‌های دندانی، پمپهای IV و پمپهای قلب میشود. مبدلهای کوچک که در مجاری خون جهت ثبت تغییرات متناوب ضربان قلب بیمار قرار داده میشوند نیز از سنسورهای پیزوالکتریک ساخته میشوند.

    تولیدکنندگان فراوردههای مصرفی نیز از استفاده کنندگان سنسورها هستند. در ماشینهای لباسشویی از سه سنسور برای کنترل میزان بار و میزان سطح آب و کنترل چرخش استفاده میشود. سنسور­های پیروالکتریکی (تولید بار الکتریکی در سطح یک بلور در اثر گرما را پیروالکتریسیته گویند که تمامی مواد پیروالکتریک، پیزوالکتریک نیز هستند) در فرهای مایکروویو شرایط غذا را کنترل میکنند و در یخچالها از سنسورهای برفک استفاده میشود. به علاوه از آنها در ترانسفورماتورهای اولتراسونیک در مرطوب کنندهها، اتمایزرها، فندکهای اجاق گاز، زنگ خطر آژیرهای خطر، دستگاه ناقل صدا در گیتارهای اکوستیک و ضبط صوتهای دارای دیسک فشرده نیز استفاده میشود.

    یک استفاده مهم سرامیک پیزوالکتریک در ایجاد و دریافت کردن امواج صوتی است. گستره کاربرد این مواد از ابزارها و تجهیزات اولتراسونیکی برای عمقیابی در دریا و پیدا کردن محل تجمع ماهیها تا تجهیزات ردیاب زیردریاییها میباشد. مثلاً دردماغه زیردریایی(Trident) از 5 تن مواد پیزوسرامیک که همگی به صورت دیسکهایی با قطر 4 اینچ و ضخامت 0.25 اینچ هستند استفاده شده است که این تکنولوژی، زیردریایی را به حرکت سریع، آرام و بی صدا در میان آب قادر میسازد. کاربردهای دیگر اثر پیزوالکترسیته در برشکاری و جوشکاری و عیبیابی در داخل قطعات فلزی صنعتی است. جدیدترین کاربردهای این مواد در پرینترهای ink-jet است. از مواد فعالکننده نویز تا ایستگاههای فضایی (مثلRaytheon)، پیزوسرامیکها اجزا کلیدی مورد نیاز برای ساخت قطعات پیشرفته و سیستمهای کارآمد را تشکیل خواهند داد.

    فرایند تولید

    فرایند ساخت پیزوسرامیکها شامل 16 مرحله است که با وزن کردن، مخلوط کردن و آسیاب کردن موادی مانند زیرکونیا، اکسید سرب، تیتانیا، نیوبیا و اکسید استرانسیم و غیره شروع می­شوند. سپس مواد مخلوط شده کلسینه شده و واکنش انجام میدهند تا ترکیب تیتانات-زیرکونات سرب تشکیل شود. ترکیب تیتانات-زیرکونات سرب تشکیل شده که دارای مقداری رطوبت است به اندازه ذرات خیلی ریز آسیاب میشود. سپس چسبها و روانسازها افزوده میشوند و ماده به دستآمده در اسپریدرایر خشک میشود تا یک پودر آماده برای تراکم حاصل شود.

    بعد از آماده سازی مواد اولیه، فرایندی که برای شکل دادن سرامیک به کار گرفته میشود، استفاده از پرس خشک یا ایزواستاتیک با فشار اعمالی بین 6 تا 100 تن است. اجزا شکل داده شده در دمای 1300 درجه فارنهایت در شرایط کنترلشده اتمسفری پخت بیسکویت میشوند تا چسبها و روانکنندههای لازم برای عمل شکلدهی در این مرحله سوخته و خارج شود. قطعات بیسکویت در بوتههای مخصوص "آلومینا بالا" قرار داده شده و برای پخت در دمای بالا در داخل کوره قرار داده میشوند. کوره الکتریکی تا حدود دمای 2300 درجه فانهایت گرم میشود و به مدت سه ساعت در این دما نگه داشته میشود (قطعات سرامیکی برای کنترل تبخیر احتمالی اکسید سرب در خلال فرایند پخت در دمای بالا در بوتههای آلومینا بالا قرار داده می­شوند).

    سپس سرامیک پختهشده با دقت زیادی به اندازههای معین ماشینکاری میشود. بعد از مرحله اندازهبندی، قطعات سرامیک متالیزه میشود؛ یعنی یک پوشش فلزی روی سطح آنها نشانده میشود. این کار به کمک تکنیک "silk screening" انجام میشود و از الکترودهای نقره، طلا، نیکل یا پلاتینیوم-پالادیوم استفاده میشود. الکترودهای متالیزه شده روی یک شبکه توری شکل که از سیمهای فلزی نسوز تشکیل شده است قرار گرفته و به داخل کوره حمل می­شوند و در دمایی در حدود 700 درجه سانتیگراد پخته میشوند.

    بعد از این مرحله، نوبت به عمل قطبیکردن قطعههای سرامیکی میرسد. در عمل قطبیکردن ولتاژ جریان مستقیم(DC) به سرامیکی که در یک روغن دیالکتریک گرمشده و مقاوم قرار دارد، اعمال میشود تا دوقطبیهای آن در یک سمت جهتگیری کنند. قطعات سرامیکی قطبیشده اکنون پیزوالکتریک هستند. بعد از قطبی کردن، نوبت به کنترل کیفی خواص میرسد. قطعات جهت تضمین و تامین کردن خواص الکتریکی متناسب با نوع کاربردشان، آزمایش و بررسی می­شوند. قطعات آزموده شده آماده بستهبندی و ارسال و استفاده هستند.

  • فهرست:

    ندارد.


    منبع:

    ندارد.

توان الکتریکی که اغلب به عنوان برق یا الکتریسیته شناخته می شود، شامل تولید و ارایه انرژی الکتریکی به میزان کافی برای راه اندازی لوازم خانگی، تجهیزات اداری، دستگاه های صنعتی و فراهم آوردن انرژی کافی برای روشنایی، پخت و پز، گرمای خانگی و صنعتی و فرایندهای صنعتی بکار می رود. تاریخچه اگرچه که الکتریسته به عنوان نتیجه واکنش شیمیایی ای که در یک پیل الکترولیک از زمانی که الساندرو ولتا ...

کاربرد نانوتکنولوژي در توليد منسوجات با کارايي بالا مقدمه : اين مقاله خلاصه اي از تحولات اخير نانوتکنولوژي در حوزه ي نساجي شامل شکل گيري و تکميل منسوجات است . در اين مبحث تلاش شده است تا جزئيات دو جنبه ي فني مطرح ، يعني استفاده ي مستقل از ساختار

میکروفونها یا مبدل های الکتروآکوستیکی، دستگاههایی هستند که تغییرات انرژی آکوستیکی را به انرژی الکتریکی تبدیل می کنند. (ضمناً عکس این مطلب نیز در مورد بلندگوها صادق است). همانطور که می دانیم انرژی صوتی از نوع انرژی مکانیکی است و با جرم، محیط الاستیک و نیرو سر و کار دارد. بنابراین حفظ و انتقال انرژی صوتی (آکوستیکی) در برد زیاد امکان پذیر نیست. فرض کنید انرژی صدای گفتگوی انسان به ...

از اهداف مهم فناوری نانو و شاید مهم‌ترین آنها به وجود آوردن ساختارهایی از مواد است که در آنها آرایش مولکول‌ها از پیش طراحی شده باشد. روش‌های مرسوم تولید، مثل روش ذوب فلزات و سرد کردن آنها در قالب، چنین امکانی را فراهم نمی‌کنند. پس چگونه می‌توان چنین ساختارهایی را به وجود آورد؟ این مقاله می‌خواهد به همین سؤال پاسخ بگوید. فرض کنید تعدادی آجر خانه‌سازی دارید و می‌خواهید با آن چیزی ...

نانو لوله‌ های کربنی می‌توانند برای تشکیل غشاهایی با تخلخل نانومتری و دارای قابلیت جداسازی آلودگی‌ها، به طور یکنواخت هم‌راستا شوند. ● فناوری‌نانولوله‌های کربنی ▪ غشا های نانو لوله‌‌ ای نانولوله‌های کربنی می‌توانند برای تشکیل غشاهایی با تخلخل نانومتری و دارای قابلیت جداسازی آلودگی‌ها، به طور یکنواخت هم‌راستا شوند. تخلخل‌ های نانومتری نانولوله‌ها این فیلترها را از دیگر فناوری‌های ...

نانو تکنولوژی، فناوری نوین نانو تکنولوژی فناوری جدیدی است که تمام دنیا را فراگرفته است و به تعبیر دقیقتر "نانو تکنولوژی بخشی از آینده نیست بلکه همه آینده است ".در این مقاله بعد از تعریف نانو به بیان دلایل کاربرد ها و ضرورتهای توجه به این فناوری اشاره شده است . تعریف نانو تکنولوژی نانو تکنولوژی،توانمندی تولید مواد،ابزار ها و سیستمهای جدید با در دست گرفتن کنترل در سطح مولکولی و ...

چکیده : فناوری نانو و تولید مواد در ابعاد نانومتری موضوع جذابی برای تحقیقات می باشد که در دهه اخیر توجه بسیاری را به خود معطوف داشته است. نانو کامپوزیت ها نیز به عنوان یکی از شاخه های این فناوری جدید ، اهمیت بسیاری یافته اند به عنوان یک تعریف ، نانوکامپوزیت ها مواد مرکبی هستند که لااقل یکی از اجزاء تشکیل دهنده آنها دارای ابعاد در محدوده ی nm100-1 می باشد و خود شامل سه دسته ...

فسفرها استحکام بالاتری نسبت به شبکه های سولفید فلزی دارند اما معمولاً انتشار دهنده های ناکارآمد در ولتاژهای پایین هستند. فسفر آبی رنگ که برای FED مورد توجه بیشتر قرار گرفته Bi:YNBO4 میباشد. (انتشار در 440nm) فسفر آبی رنگ اشباع شده بوسیله جانشین سازی Nb در شبکه YNBO4:Bi نیز تولید میشود اما از نظر کارایی، کارایی کمتری دارد. رفتار نور دهی YNBO4:Bi, YNBO4 تحت UV و الکترون های متحرک ...

تعريف امواج فراصوت ultrasound از ultra به معني ماورا و نيز sound به معني صوت يا صدا گرفته شده‌است. امواج فراصوت به شکلي از انرژي از امواج مکانيکي گفته مي‌شود که فرکانس آنها بالاتر از حد شنوايي انسان باشد. گوش انسان قادر است امواج بين ?? هرتز

کاربرد نانومواد درصنعت برق ‌‌‌‌زمانی که قرن بیستم آغاز شد،افراد معمولی بسیار سخت می توانستند درک کنند که خودروها وهواپیماها چگونه کار می کنند·بهره گیری از انرژی اتمی فقط درحد تئوری وجود داشت و شاید اکنون نیز برای عده ای در ابتدای قرن بیست و یکم بسیار سخت باشد که باور کنند بشر روبوتهای میکروسکوپی خواهد ساختو خط مونتاژ میکروسکوپی داشته باشد·تولید چنین محصولات خارق العاده ای حاصل ...

ثبت سفارش
تعداد
عنوان محصول